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PREFACE 
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Some of the results in this report will appear in condensed form in 
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SECTION I 

INTRODUCTION 

Denote by   xi * x2 < *" < xn   t^e times to failure of   n   items whose 

unordered failure times are independent and identically distributed.    Assume 

that the underlying distribution of the unordered variates, (l/a)f{(x-p)/o}, 

is continuous and known up to location and scale.   Me consider the problem 

of predicting   x-   after observing only   Xj, ..., xr,   where   1 4 r < m ^n. 

Prediction intervals in this setting have been studied by several authors 

(Hewett [1], Lawless [2], Kaminsky and Nelson [3], Likes [4], Mann, Schäfer 

and Singpurwalla [5], Mann and Grubbs [6]).   Best linear unbiased prediction 

of   x    was treated by Kaminsky and Nelson [7].   A significant reduction in 

mean square error is achieved by sacrificing unbiasedness and investigating 

the larger class of linear invariant predictors with mean square error 

proportional to  a2.   We find the best linear invariant predictors and we 

develop two simplified linear invariant predictors.   The relative behavior 

of the predictors is indicated in Table 1 for the exponential, chl, normal, 

logistic, extreme value and double exponential distributions. 



SECTION II 

NOTATION 

The order statistics can be written (Lloyd [8]) x. = y + o.a + e, 

(1*1, .... n). We will write the first r of these in the matric form 

X = A0 + e where X' = (x., .... xr), A = (l,o), 1' ■ (1 1){1 x r), 

o' ■ (o., ..., a ),   o' s (y,o)   and   e' a (e., ..., e ).   Thus, our problem 

is to predict   x„ ■ A 0 + e.. {Am = (l,aj}   from  X.   The variance-covariance m     m       m    m m 

matrix of   X   is   o2V = o2(v. .){!<. i, j <, r).   Of course,   a   and   V   do not 

depend on   u   or  o   and   E(e.) ■ 0 (isl, .... n).   Denote 

cov(X',xm) = a2(vlm, "•> vm)   by   o2w'. 

When both   y   and   a   are unknown, we write  9' ■ (0,5)   and   x     for 

the best linear unbiased estimate of   0'   and best linear unbiased predictor 

of   x , respectively.   If one of the parameters is known, that parameter 

will appear as a subscript in the estimate and predictor.   Thus, for example, 

X      and   5    are respectively the best linear unbiased predictor of   xm mu y m 

and the best linear unbiased estimate of  o  when   u   is known.   The best 

linear unbiased predictors and their mean square errors are given Implicitly 

in Theorem 1. 



SECTION III 

BEST LINEAR INVARIANT PREDICTION OF x,,, 

There Is a close connection between best linear Invariant prediction 

and best linear Invariant estimation, as we see In the following theorem. 

It should be pointed out that the theorem Is not limited to the order stat- 

istics but could be stated for the general linear model. 

Theorem 1. Let kj = 1 - w'V-1! and k2 = o^ - w'V-^ and k' = (kj.kg). 

Let the varlance-covarlance matrix of (k'§,o) be 

o2l 

cll c12 

C12 c22 

and var(o ) ■ c a2. 

(a) If y and o are unknown, the best linear Invariant predictor of 

Xm    is m 

xm = w'V^X + kjS + {k2 - c12/(l + c22)}5 

= xm - {c12/(l + c22)}5 

with mean square error 

M^)=a2{vmm-w'V"lw + cll-c212/(1 + c22)} 

= M{xm) - c2
12a2/(l + c22). 

(b)   If   y   Is known and   a   unknown, the best linear invariant 

predictor of   x    Is m 

\   - W'V"1,( + V + k2%/(1 * %' 

with mean square error 

M(xm ) = o^v^ - w'V^w + k^c /(I + c )} v m ' 0  mm        Z y'x   y' 
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(c) If a is known and y unknown, the best linear Invariant 

predictor of x  Is m 

>L = w'V^X + k.Ü + k9o = 5 ma 1 a  Z   mo 

with mean square error 

M(^) ■ °2^m ' w'V"lw + cll " ^22) • *^' 

Proof.   We prove part (a). We first point out that for any linear predictor 

a'X, the mean square error, E(x„ - a'X)2 can be written as m 

M(a'X) = o^v^ - w'V^w) + E(p'X - k'0)2, (1) 

where   p = a - V" w.   This follows from the easily verified facts, 

1)   x   - a'X = e   - w'V^e - (p'X - k'e). 

11)   E(e   - w'V"1
E)(p'X - k'o) = 0, 

and 

111)   E(em - w'V"1
e)2 = oHv     - w'V^w). 

Thus, In order that a'X be the best linear Invariant predictor of x , m 

p'X   must be the best linear Invariant estimate of   k'e.   From Theorem 1 

of Mann [9], we see that   p'X = k'0 + {c12/(l + c22)}5 (I.e., xm = w'V^X + 

kjil + {k2 - c12/(l + c22)}o)   and   E(p'X - k'o)2 = o2{c11 - c}2/(l + c22)}. 

That   xm = x,,, - {c12/(l + c22)}a   and   M{xm) = M(xin) - c52a2/{l + c^)   now 

follow from the results of Kamlnsky and Nelson [7].   Parts (b) and (c) follow 

In a similar fashion from the results of Mann [10] and Kamlnsky and Nelson [7] 

Femark.    The mean square error (1) can be rewritten In the more convenient 

form 

M(a'X) = o2{vmiM + a'Va - 2a'w + U   - a'«)2} 
mm m 

+ (1 - a'l)2u2 + 2(1 - a'lH^ - a'a)yo. 



Thus,   a'X   Is Invariant for   x„   if and only if   a'l = 1   and is unbiased 
In 

for   ^   if and only if, in addition,   a'a = o^. 

Example l.    Assume that the parent population is exponential, 

{l/a)exp{-(x - u)/o}, x > M, o > 0, p and a unknown.   We find   w'V"   = 

(0 0,1); M « Xj - 5/n; 5 » -(n - l)x1/{r - 1) + ^^/(r - 1) + 

(n - r + l)xr/(r - 1); var(5) = o2/{r - 1); var(y) = o2/{n2(r - 1)}; 

cov(y,o) = -o2/{n(r - 1)}; k, = 0; k« = 6.,   where we define   6. = 6.(r,in) = 

zj=Jl+1(n - j + I)"1 (i=l,2).   Now,   ^ = xr + s^ir - l)/r   and   MCxJ = 

o2(62 + 6|/r).   For comparison,   ^ = xr + öjo   and   «{xj = o2{62 + ^/(r-l)}. 
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SECTION IV 

SIMPLIFIED LINEAR INVARIANT PREDICTION 

Remark.     In the Interest of brevity, we will assume throughout this 

section that both y and o are unknown. Also, we will treat only invariant 

prediction (not necessarily unbiased). The corresponding unbiased predictors 

can be obtained In a manner quite similar to that outlined below by adding 

the appropriate linear constraint. 

There are only a few distributions of which we know (the exponential, 

power-function, Pareto and a few others) where the best linear invariant 

predictor has a simple closed form. This is because V can rarely be 

Inverted algebralcly. When r is large. Inversion of V can be especially 

troublesome. These observations have motivated us to search for simplified 

predictors which do not depend on inversion of V. On examination of the 

coefficients of x^ for various r, m and n, some patterns emerge. 

First, In distributions not having an unknown lower terminus, such as the 

normal, logistic, extreme value and double exponential, the first r - 1 

coefficients are. In general, reasonably close to one another with a jump 

occurring at the r-th coefficient. Second, in distributions with an unknown 

lower terminus, such as the exponential and chi distributions, the middle 

r - 2 coefficients of x are generally reasonably close to each other 

(with equality for the exponential distribution), and jumps occur at the 

first and last coefficients. Also, many researchers have observed that 

linear estimates of location and scale lose efficiency rather slowly as the 

coefficients are changed, while maintaining unblasedness or invariance 

(cf. David [11], p. 108). These observations lead us to suggest using 



linear Invariant predictors depending on two weights If the parent distri- 

bution does not have an unknown lower terminus and on three weights other- 

wise.   Incidentally, Table 1 Indicates that the two-weight predictors are 

fairly efficient even In distributions which do possess an unknown lower 

terminus. 

Our two-weight linear Invariant predictor takes the form 

x*(x) = XE^jyCr - 1) + (1 - x)xr. 

where   A   IS some real constant.   The mean square error of   x*(x)t   viewed as 

a function of   X,   Is a parabola, opening upward, with Its minimum value at 

_ vrr - Vgn + £(vlm - v1r)/(r - !) ' W ' £o1^r ' j^Ki '_ *J 
o       Vrr + ÜOTr - I)2 - 2Evir/{r - 1) + {ar - ^/(r - I)}2     * 

all summations being from   1   to   r - 1.   We write   x*   In place of   x*(x ) 
m m   o 

and we observe that inversion of   V   Is unnecessary to compute either   x* 

or its mean square error. 

The three-weight linear invariant predictor takes the form 

XJ*(B.Y) = BXj + YJ:I[,:]xi/(r - 2) + (1 - ß - Y)xr 

The mean square error of   X**(B,Y),   viewed as a function of  ß   and   y, ^s 

a paraboloid opening upward.   It is elementary to verify that the minimum 

mean square error occurs at the point 

where 



and 

?ii = vll-2vrl + vrr + (or-al)2' 

C12 = 2(vil - vir)/{r - 2) + vrr - vrl + (ar - ajHo^ - ^/(r - 2)1, 

«22 = «v^/Cr - 2)2 - 2J:v1r/(r - 2) + vrr + {ar - ^/(r - 2)}2. 

ni   = vlm " vnn " vlr + vrr " (ar " ^K, " "r^ 

^2   = ^m ' vir^(r " 2) " vnn + vrr " K " V{or " Mr " ^}' 

where all summations run from   2   to   r - 1.   We write   x**   in place of 

x**(ß0.Y )   and we note again that calculation of   x**   or its mean square 

error does not require inversion of   V. 

Remark.     In the case of the exponential distribution,   x    is a three-weight 

predictor (see Example 1), so that   x   E X**. 

  Hill IMIHIIMI ute.t^^tmmimiimmmmtmtä 



SECTION V 

DISCUSSION OF THE TABLE 

The computations for Table 1 were performed on the Cyber 74 computer 

at the Wright-Patterson Air Force Base, Ohio. The arithmetic was accurate 

to fourteen decimal places but was, of course, limited by the number of 

significant figures In the tables of expectations and covarlances. These 

expectations and covarlances were obtained from the following sources: 

Govlndarajulu and Elsenstat [12], the chi distribution 

f(x) = ^77e"x /2. x > 0; 

Sarhan and Greenberg [13], pp. 190-205, the normal distribution 

f{x) = e"x2/2//&r. - < x < -. 

Birnbaum and Dudman [14], Gupta and Shah [15], Tartar and Clark [16], 

Shah [17] and Gupta, Qureishi and Shah [18], the logistic distribution 

■irX//3 

•3(1 + e■1rA/r,,)' 
FW a-e   ' •^im ' -<x<-; 

Mann [19], the extreme value distribution 

x-ex 
f(x) « e  , -- < x < •; 

and Govlndarajulu [20], the double exponential distribution 

f(x) = e'lxl/2.   -« < x < -. 

Table 1 Is Intended to give some indication of the relative performance 

of the predictors In small and moderately large samples.   The table contains 

the mean square errors of   x . 5( , x*  and   x** (y and o unknown) for n = 7, 
m    m    m m 

n = 20 and various combinations of  r  and   m,   for the five distributions 

mentioned above and the exponential distribution.   In most cases, the best 



linear Invariant predictor Is seen to reduce mean square error considerably 

below that of the best linear unbiased predictor.   The three-weight predictor 

generally comes quite close to the best linear invariant predictor, and, In 

most cases, both simplified predictors surpass the best linear unbiased pre- 

dictor.   It seems likely from the table that the discrepancy between the 

mean square errors of the unbiased predictor and the Invariant predictors 

Increases the farther away   m   Is from   r.   We will Illustrate some of the 

computations with an example. 

Example 2.   Seven Identical Items whose failure times are known to follow 

the chi distribution with unknown location and scale are simultaneously 

subjected to stress.   The Items function 1 ndependently,and,after the first 

four failures have been observed, we wish to predict the time of the last 

failure.   From Govlndarajulu and Elsenstat [12], we find   y s l.SlOSxj - 

0.0106x2 - O.O246X3 " 0-2753x4   and   5 = -2.0147XJ + 0.1370x2 + 0.2093x3 + 

1.6685x4,   var(y) = 0.0304o2,   var(a) = 0.2388o2   and   cov(0,5) = -0.0485a2. 

Also, we find that   w'V"1 = (-0.0011, -0.0018, -0.0037. 0.6443),   w'V1! = 

0.6377   and   w'V"1« = 0.4497.   The four predictors are   x7 = -2.0934XJ + 

0.1693x2 + 0.2534x3 + 2.6707x4, x7 = -1.6270XJ + 0.1375x2 + 0.2051x3 + 

2.2844x4,   x* = -0.6694(x1 + x2 + x3) + 3.0082x4   and   x** = -1.6401XJ + 

0.1732(x2 + x3) + 2.2937x4.   From Table 1 with .r = 4,   m = 7   and   n = 7 

for the chi distribution, we find the mean square errors of the predictors 

to be   M(x7) = 0.5998o2,   M(x7) = 0.5335o2,   M(x*) = 0.5772a2   and 

M(x**) = 0.5335a2. 

10 



Table I.   Mean equare errors of the prediatore divided by   o2 

"<*«) «\) M(S) Wxj*) M(^) N(^) H(xj) H(xj*) 

Exponential 
Cht 
Normal 
Logistic 
Extreme value 

rs!4, mB5, n37 
0.1482 0.1389 0.1447 0.1389 
0.0644 0.0606 0.0628 0.0606 
0.1379 0.1308 0.1332 0.1309 
0.1178 0.1109 0.1117 0.1110 
0.1756 0.1643 0.1647 0.1644 

r = 41inss6, n = 7 
0.5926 0.5347 0.5/09 0.5347 
0.2066 0.1876 0.1994 0.1876 
0.3754 0.3449 0.3554 0.3453 
0.3478 0.3165 0.3200 0.3170 
0.4225 0.3783 0.3797 0.3786 Extreme value 0.1756 0.1643 0.1647 0.1644    0.4225 0.3783 0.3797 0.3786 

Double exponential     0.1818 0.1702 0.1702 0.1702    0.6456 0.5830 0.5832 0.5831 

Exponential 
Ch1 
Normal 
Logistic 
Extreme value 
Double exponential 

Exponential 
Chi 
Normal 
Logistic 
Extreme value 
Double exponential 

Exponential 
Chi 
Normal 
Logistic 
Extreme value 
Double exponential 

Exponential 
Chi 
Normal 
Logistic 
Extreme value 
Double exponential 

Exponential 
Chi 
Normal 
Logistic 
Extreme value 
Double exponential 

r = 4, m = 7, n = 7 
2.4815 2.2014 2.3764 2.2014 
0.5998 0.5335 0.5772 0.5335 
0.9147 0.8239 0.8555 0.8251 
1.0507 0.9437 0.9542 0.9454 
0.8453 0.7325 0.7355 0.7331 
2.5376 2.2605 2.2611 2.2609 

r = 5, m = 13, n = 20 
0.2002 0.1739 0.1938 0.1739 
0.1210 0.1058 0.1171 0.1058 
0.3438 0.3065 0.3153 0.3070 
0.3111 0.2707 0.2715 0.2709 
0.6362 0.5517 0.5521 0.5518 
0.4976 0.4338 0.4338 0.4338 

r - 10, m = 11, n = 20 
0.0111 0.0110 0.0114 0.0110 
0.0063 0.0063 0.0064 0.0063 
0.0158 0.0157 0.0159 0.0157 
0.0126 0.0125 0.0125 0.0125 
0.0217 0.0215 0.0216 0.0215 

rs5, in = 6,n = 20 
0.0056 0.0053 0.0055 0.0053 
0.0050 0.0048 0.0049 0.0048 
0.0275 0.0266 0.0268 0.0266 
0.0255 0.0244 0.0245 0.0245 
0.0646 0.0620 0.0621 0.0621 
0.0501 0.0481 0.0481 0.0481 

r = 5, m = 20, n = 20 
4.3331 3.7826 4.2002 3.7826 
1.0484 0.9066 1.0219 0.9066 
1.7008 1.4939 1.5427 1.4964 
2.1589 1.8702 1.8741 1.8714 
1.9460 1.6343 1.6354 1.634o 
5.1414 4.4474 4.4474 4.4474 

r = 10, m = 15, n = 20 
0.1325 0.1278 0.1432 0.1278 
0.0571 0.0552 0.0614 0.0553 
0.1102 0.1072 0.1125 0.1081 
0.0940 0.0909 0.0920 0.0914 
0.1316 0.1267 0.1274 0.1271 

0.0148 0.0146 0.0146 0.0146     0.1421 0.1370 0.1371 0.1371 

r = 10, m = 20, n = 20 
2.5030 2.4077 2.7243 2.4077 
0.4681 0.4498 0.5202 0.4499 
0.6369 0.6142 0.6544 0.6211 
0.9086 0.8771 0.8838 0.8796 
0.4876 0.4605 0.4635 0.4622 
2.5189 2.4237 2.4239 2.4239 

r = 15, m = 18, n = 20 
0.2574 0.2545 0.2800 0.2545 
0.0675 0.0669 0.0734 0.0669 
0.0993 0.0984 0.1043 0.1000 
0.1051 0.1042 0.1077 0.1061 
0.0741 0.0731 0.0743 0.0739 
0.2564 0.2536 0.2567 0.2559 

r = 15, m = 16, n = 20 
0.0429 0.0427 0.0443 0.0427 
0.0142 0.0142 0.0147 0.0142 
0.0234 0.0233 0.0238 0.0234 
0.0215 0.0214 0.0217 0.0216 
0.0198 0.0197 0.0198 0.0198 
0.0428 0.0427 0.0429 0.0428 

r = 15, m = 20, n = 20 
1.8360 1.8112 2.0272 1.8112 
0.2899 0.2863 0.3253 0.2865 
0.3685 0.3642 0.3935 0.3722 
0.5988 0.5928 0.6128 0.6044 
0.2041 0.2001 0.2045 0.2030 
1.8266 1.8030 1.8293 1.8224 

11 



SECTION VI 

SOME COMMENTS ON TWO-SAMPLE PREDICTION 

The procedures discussed In the preceding sections extend easily to 

two-sample prediction.   Specifically, suppose we wish to predict the m'-tfz 

failure time,   y,,,-,   in a future, independent sample of size   n'   from the 

same population, the predictor being based on   X,   where now   r  may 

equal   n.   Prediction intervals in this setting have been studied by Mann 

and Saunders [9], Lawless [21, 22, 23], Antle and Rademaker [24], Kaminsky 

and Nelson [3], Mann, Schäfer and Singpurwalla [5] and Fertig and Mann [25]. 

It is easy to show that   y   ~ E{y J   and   y ,= E{y J.   That is, the 
mm mm 

best predictor of  y ,   is the best estimate of   E(y„J   in both the unbiased m m 

and the invariant cases.   This follows from the independence of the two samples. 

Simplified predictors of  ym>   can also be derived as in   S4.   We will not 

pursue these ideas further at this time. 

12 
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